A RAND NOTE

Evaluating Expert System Tools:
A Framework and Methodology-Workshops

Jeff Rothenberg, Jody Paul, Iris Kameny,
James R. Klpps, Marcy Swenson

July 1987

RAND

The research described in this report was sponsored by the Defense Advanced
Research Projects Agency under RAND’s National Defense Research Insti-
tute, a federally funded research and development center supported by the
Ofﬁce of the Secretary of Defense and the Joint Chiefs of Staff, Contract No.
MDA903-85-C-0030.

The RAND Publication Series: The Report is the principal publication doc-
umenting and transmitting RAND’s major research findings and final research
resuits. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of The RAND Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

A RAND NOTE N-2603-DARPA

Evaluating Expert System Tools:
A Framework and Methodology--Werkshops

Jeff Rothenberg, Jody Paul, Iris Kameny,
James R. Kipps, Marcy Swenson

July 1987

Prepared for
The Defense Advanced Research Projects Agency

RAND

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- iii -

PREFACE

This Note describes two workshops held at The RAND Corporation in
June and November 1986 in conjunction with a study conducted for the
Information Science and Technology Office of the Defense Advanced
Research Projects Agency (DARPA), under RAND's National Defense Research
Institute (NDRI). The NDRI is a Federally Funded Research and
Development Center sponsored by the Office of the Secretary of Defense.
The study was undertaken to develop criteria for evaluating and
selecting tools used to build expert systems. The Note should be of
interest primarily to decisionmakers concerned with choosing such tools,
i.e., managers of expert system development projects and developers of
expert systems. It should also be of value to developers of expert
system tools and artificial intelligence (AI) researchers investigating
new expert system techniques.

The main results of the study are presented in companion RAND
Report R-3542-DARPA, Evaluating Expert System Tools: A Framework and
Methodology, by J. Rothenberg, J. Paul, I. Kameny, and J. Kipps, July
1987. This work draws heavily on the experience of expert system tool
developers and users. The authors enhanced their own background in the
field by studying and using a number of major tools, and by hosting two
workshops: one for tool developers (representing seven commercial
vendors) and one for tool users (representing over thirty expert system
development projects). The workshops validated and refined the authors'
ideas and provided both objective and anecdotal evidence about the state

of current expert system tools and expert system research.

- v =

SUMMARY

Expert systems represent a new approach to solving problems with
computers, using programs that explicitly embody human knowledge and
expertise from a given problem domain. The expert system paradigm
emphasizes the rapid generation of prototype systems whose behavior can
be understood and refined by domain experts. Because the expert system
approach differs from traditional software engineering, it has spawned a
new class of tools that can provide considerable leverage in building
expert systems. One of the first steps an expert system developer
usually takes, therefore, is to survey the available tools and decide
which, if any, is most appropriate to the task at hand. However, this
evaluation is a complex task; its cost and the attendant risk of
performing it ineffectively motivate the development of a ratiomnal,
reliable strategy for evaluzting expert system tools.

The authors have developed a framework of criteria for performing
such evaluations, along with a methodology for tailoring and applying
this framework to particular projects and problems. That work is
described in companion RAND Report R-3542-DARPA, Evaluating Expert
System Tools: A Framework and Methodology. To validate and refine the
ideas presented in that study, and to obtain evidence, both objective
and anecdotal, about the state of current expert system tools and expert
system research and development in general, The RAND Corporation hosted
two workshops in 1986, one for expert system tool developers and one for
expert system tool users. This Note describes the two workshops and
summarizes the discussions and conclusions presented there.

Participants in the tool developers' workshop generally agreed with
the evaluation framework and the proposed criteria, but some felt that
it is premature to attempt to develop evaluation benchmarks that can
directly compare tools with one another. The workshop discussions led
to a shifting and refinement of the evaluation contexts, resulting in
additional criteria relevant to the fielding of expert systems (e.g.,

portability, integrability, and phased installation). Concerns not yet

being addressed by most tool developers (e.g., software engineering
issues, novice tool user and interface issues) were identified, and it
was recommended that RAND next host a workshop for expert system tool
users, to capture their concerns and perspective.

Prospective participants for the tool users' workshop were asked to
fill out two questionnaires. The first was used to screen and select
appropriate attendees, and the second requested detailed information
about the respondents' current work. The results of the users' workshop
and the questionnaires showed that users generally agree that the tools
are of significant value and that they provide a great advantage over
building expert systems directly in a programming language (such.as
LISP). Most users feel that current tools are well-designed, reasonably
supported, and sufficiently powerful to justify their cost. The most
frequently cited shortcomings of the tools are lack of speed and lack of
explicit control over inferencing capabilities. Concern was also voiced
about the tendency of vendors to release new versions that have not been
rigorously debugged. As expert systems move from the conceptualizing
and prototyping phases into development and fielding, there will be an
increasingly urgent need for tool integration with information
acquisition and distribution facilities such as database management
systems (DBMSs), communication networks, and sensor input, as well as

with other software and hardware environments and output devices.

- vii -

CONTENTS

50 14 00 L0

SUMMARY .. ittt ittt i et ettt ettt i i i e e e e
Section

I. TOOL DEVELOPERS' WORKSHOPviiuenenenenenenenenss

(0 = a4 - P

Summary of Results,

Fielding and Developmentiiiiiiiennnnnnnnn.

Assessment Techniquesc.iiuiiiiiiiiiiinnnnnn

NOVice USers ...t ieiiiiiiieeeenneeoeoneonsnsosnsnnnos

Other Resultsiiitiiiiiiiiinnenneensnooonnonsns

II. TOOL USERS' WORKSHOP v'iiisitetiiiteenneenneeeennnn

L= o T

Summary of Resultsttt niennnnennas

Concerns of New Tool Choosers and Users

Wish List ..ot it it e i e teieanannnns
Appendix

A. LIST OF PARTICIPANTS .. iitiiiiiiitnerneennesononconnas

B, QUESTIONNAIRES . .iiiiiiiiiitiiieteeneeeennoseenanennns

C. BENCHMARKS ..ttt it ittt ieenesaenennaneaanansnnns

D. QUESTIONNAIRE RESULTSt viiitinernennnenoioesnnsneas

I. TOOL DEVELOPERS' WORKSHOP

OVERVIEW

On June 26-27, 1986, a workshop was held for expert system tool
developers at The RAND Corporation in Santa Monica. The participants
were technical representatives from seven expert system tool companies
and RAND researchers (the participants are listed in App. A).

The purpose of the workshop was to make sure the RAND study team
understood the perspective of the tool developers. Although we already
had our initial framework and methodology fairly well defined, to avoid
prejudicing the developers, we presented our ideas only after they had
had a chance to present theirs. We requested that each attendee prepare
a 20-minute presentation giving his own perspective on evaluation. To
give the workshop some common structure, we suggested that these
presentations focus on evaluation contexts (including some background on
each developer's philosophy of product design, support, and customer
relations) and propose high-level evaluation criteria. We also sent the
developers a preliminary description of a sample "benchmark' problem, to
give them time to prepare their own examples for the workshop.

The participants represented several of the most prominent
commercial tool vendors plus a sampling of others. The attendees
provided an excellent cross-section of tools, markets, and target
environments. We took care to insure that the vendors understood what
we were trying to get out of the workshop, so that they would send
appropriate technical people who would leave their salesmanship at home.
The results of this groundwork were highly gratifying: the attendees
were all top-level design personnel with extensive experience in tool
development and broad perspectives on both technical and commercial
issues, and they came prepared to share ideas and solve problems. The
results of the workshop are due in large part to the professionalism of
the attendees and their willingness to work as open-minded system

analysts rather than sales representatives.

Don Waterman of RAND opened the workshop with a reiteration of its
goals. About half of the. first day was then spent hearing and
discussing the developers' presentations. This served to establish the
points of view and concentrations of the various companies represented,
as well as to establish a common terminological base for further
interaction.

We then presented our initial tool evaluation framework, organized
around contexts, tool capabilities, metrics, and "methods of evaluation'
(which we now refer to as "assessment techniques'). We also addressed
the use of benchmark problems (miniature applications) to test various
aspects of a tool's representational capabilities and its use in
development.

The participants then broke up into three working groups of four to
five people each. Working Group 1 focused on issues involved in
fielding or deploying expert systems. Working Group 2 addressed
assessment techniques for applying metrics to expert system tools.
Working Group 3 focused on the tool evaluation criteria that would be
appropriate for a "novice' expert system developer (defined as someone
with minimal experience in designing and building expert systems).

The focus and composition of these groups was determined by mutual
interest and choice, moderated by some voluntary '"load balancing." The
remainder of the workshop alternated between working group sessions,
feedback sessions to disseminate working group results, and individual
or group "dumps," where ideas and results were permanently recorded in
text files (all participants and groups were provided access to computer
terminals).

In the rest of this section, we present a summary of the most
important results, followed by detailed results of each of the working
groups. We present the working group results as relatively "raw" data
here to give a flavor of the richness and degree of overlap among the
groups; these results are aggregated and analyzed in the summary and
elsewhere in this note. Finally, we discuss other ideas and concepts
that emerged in the developers' presentations and are not covered

explicitly in the working group results.

SUMMARY OF RESULTS

The workshop was extremely rich in the exchange of ideas and

concepts, as expressed in the results of the working groups. This

section summarizes four areas in which the workshop contributed to our

understanding:

1. Enhancement and validation of our evaluation dimensions and
criteria.

2. Shifting and refinement of our evaluation contexts, resulting
in additional criteria relevant to the fielding of expert
systems.

3. Identification of concerns not yet being addressed by most tool
developers (e.g., software engineering issues, novice tool user
issues, and interface issues).

4. The recommendation that RAND host a future workshop for users

of expert system tools, to capture their concerns and

perspective.

Validation of Evaluation Dimensions and Criteria

For the most part, the tool developers agreed with our evaluation

framework and our proposed criteria. The major results of the workshop

in this area were:

Application characteristics was added as an explicit evaluation
dimension.

The tool developers felt that it is premature to attempt to
develop evaluation benchmarks that can directly compare tools
with each other.

Consensus was reached on a set of potential assessment

techniques to be used for evaluation.

In our original focus on matching a tool to a problem, the

characteristics of the problem were considered to be crucial to the

evaluation process, yet extrinsic to the evaluation framework. The tool

developers felt that the framework for evaluating a tool should include
the characteristics of the application for which it will be used. As a
result, we promoted application characteristics from an extrinsic factor
to an actual dimension of our framework. As the reader will see in the
next section, the tool users at our second workshop did not feel as
strongly about this as the tool developers--perhaps because they were
more interested in general-purpose tools. Also, the larger, more
complete tools currently advertise support for hybrid reasoning and
knowledge representation, and so are projecting themselves as general
tools. While tool users may be reflecting this image, the tool
developers may be more aware of the differences between their tools (or
they may be searching for such differences in the interests of securing
distinct market niches), and so may be more concerned with how these
differences are related to application characteristics.

Many of the tool developers felt that it was still premature to
expect to use any kind of benchmark to compare tools directly with each

other. The reasons for this reluctance were:

e The results of applying small benchmarks will not scale to
large applications, and so may be misleading.

o Many proposed criteria (e.g., ease of learning, ease of use)
are difficult to benchmark.

. The expert system field is still immature and does not have
well-established definitions. This makes tool characteristics
and features difficult to compare across different tools, since
similarly named features of different tools may be functionally
quite different.

. If benchmarks are implemented by a different team for each
tool, the differences among the results are as likely to
reflect differences among the teams as differences among the
tools. (This same problem exists in software engineering when
trying to compare different languages or methodologies by

having a benchmark problem implemented by different groups.)

-5 =-

Nevertheless, it was felt that standard benchmarks implemented and
published by vendors would allow tool users to compare the vendors'
preferred styles and best solutions to the given problems. We note that
this approach would make it impossible to 'cheat,' since performance or
cleverness bought at the price of clarity or elegance would be apparent
in the published solutions. Furthermore, vendors could propose their
own benchmarks to insure that important features of their tools were
shown to good advantage; vendors would presumably implement those
benchmarks that suited their tools, thereby providing users with
comparisons of comparable capabilities of tools. Implementations of
benchmarks would provide operational definitions of capabilities,
thereby alleviating the problem of terminological confusion among
similarly named features.

The tool developers agreed that a number of other assessment
techniques are also potentially useful for evaluating expert system

tools. The complete list included:

. Comparison of a tool to a standard
O Interviews

. Questionnaires

O Benchmark problems

¢ C(Case studies

Q Library of expert system efforts

O Development of an expert system for tool evaluation

These techniques were further discussed and evaluated by tool users in

our second workshop.

Criteria Relevant to Fielding Expert Systems

The tool developers were in agreement that the ability of a tool to
support deployment of an end-product expert system was critically
important and warranted additional emphasis in our evaluation scheme.
Portability and the ease of integrating an expert system into the

application (or "delivery") environment, given the hardware and software

-6 -

constraints imposed by that environment, were seen as particularly
important. This problem is alleviated if the delivery environment is
identical to the development environment. It may also be vital for
tools to support phased installation of an expert system in environments

where live data cannot be interrupted or compromised.

Identification of Concerns Not Yet Being Addressed

It was felt that a number of important issues are not yet being
dealt with by many of the tools, due to the relative immaturity of the
expert system field and the relatively small number of completed,
delivered expert systems. The main areas of concern involved software
engineering, the use of the tools by "novice" users with little
experience in building expert systems, and user interface issues. The
tool developers felt that as expert system technology emerges from its
infancy and loses its innocence, it will become increasingly apparent
that expert systems are "just" another type of software product, like a
database management system (DBMS), that must operate in standard
application, software, and hardware environments and integrate well with
other software tools and capabilities.

The ultimate effectiveness of a fielded system rests squarely on
its execution competence and performance. Reliability and maintainability
loom as major software engineering issues yet to be faced by many of the
existing tools: particularly important here are error handling and recovery
and the ease of maintaining delivered software in the field. Multi-user
application support (including concurrent data access, with the attendant
database management issues) is also seen as a crucial element that is
missing from many existing tools. Finally, the usability and acceptability
of a fielded system depend heavily on its user interface: this implies
that tools should provide support for designing and building powerful
interfaces, as well as allowing a delivered system to be embedded in an
existing interface in the application environment.

Additional tool evaluation criteria were defined that would be
appropriate for a "novice" developing a prototype expert system. It was
felt that one of the major difficulties facing novices is determining

which tool features are required for their particular problem. The

novice therefore needs assistance in classifying problems according to
type (e.g., planning, diagnosis) and in determining which capabilities
and features are needed for solving problems of a given type. (Note,
however, that classifying problems is still an open research issue
(Chandrasekaran, 1986).) Another difficulty facing novices is that of
determining the size or complexity of a problem.

Of particular importance to the novice is the ease with which the
tool can be learned and used. The documentation and training provided
by the vendor must be of high quality and complete, and the tool must be
easy to use. If domain knowledge must be represented in a LISP-like
language, the novice may have difficulty learning the language and using
the tool. Similarly, a novice may have trouble if using a tool requires
dealing directly with the operating system and the language underlying
the tool. Though novices may be domain experts, they may lack
sufficient artificial intelligence (AI) expertise to solve certain
problems appropriately using an expert system tool; in such cases, the

availability of vendor support and consulting become important criteria.

Recommendation to Hold a Tool Users' Workshop
This recommendation by the tool developers led to our holding a

tool users' workshop, described in Sec. II.

FIELDING AND DEVELOPMENT

Workshop participants in Working Group 1 considered the evaluation
issues involved in fielding (i.e., deploying) expert systems. This
included evaluating the deployment process itself (including integration
and interoperability issues) and the execution effectiveness of the
delivered system. A detailed description of the evaluation criteria

discussed is given below under the categories:

0 Fielding/deployment
Q Multi-user support
o Reliability

0 Execution

. Human interface

O Maintenance

Fielding/Deployment Criteria

The evaluation criteria relevant to fielding or deployment were
grouped into portability issues, environment constraints (including
hardware and software), transition, and the fielding process itself.

Portability. Given that many expert system development efforts have
a 2- to 3-year deployment horizon, the eventual fielding hardware is
likely to be unknowable at the outset of development. Only in a few
cases can it be assumed that a target expert system will be deployed in
the same environment that is used to develop it. An expert system tool
must therefore support portable deployment. This requires language
portability and interface portability (particularly graphics).

The language used to implement an expert system with a tool need
not be the language in which the tool itself is implemented (though this
is sometimes the case). Many tools define their own languages in which
their users implement the bulk of their expert systems; but some tools
also allow the user to "call out" into some underlying language, for
example to provide access to the underlying system; this "call-out”
language is typically the language in which the tool itself is
implemented, but may be yet another language. Portability requires that
the expert system implementation language and the "call-out" language
(if any) be available in the delivery environment (or at least be cross-
compilable to that environment). Failing this, a tool user must rewrite
code in order to field an expert system after developing it. To further
complicate matters, many tools provide some subset of their development
facilities in the delivery environment (e.g., explanation tracing). In
such cases, the tool itself must also be portable to provide these
facilities as part of the fielded system. This requires the language in
which the tool itself is implemented to be available in the delivery
environment as well. The use of a standard programming language (such
as C, Pascal, Ada,! or Common LISP) as an implementation language offers

one solution to this problem.

'Ada is a registered trademark of the U.S. government (Ada Joint
Program Office).

In addition to the language issue, there is the thorny problem of
interface portability. Even among standard languages, interface
standards are rare, and those that do exist are often low-level. To
make use of windows, graphics, color, and input devices (such as mice),
an expert system implementer generally has only two choices: either use
the facilities provided by the tool itself (and hope that the tool
vendor will solve the problem of porting these to the desired delivery
environment), or implement special-purpose interface code targeted for
the delivery environment (which may mean sacrificing the ability to try
this interface out in the development environment, if these environments
are incompatible).

Environment Constraints. Environment constraints include both
hardware and software. Hardware considerations include the delivery
cost of hardware per end-user. In some cases, a chosen market and
target price may determine the hardware; in other cases, hardware
requirements may determine the price and therefore the market. Hardware
may also be determined by decree, e.g., for government-furnished
equipment (GFE). The growth potential of the target system depends on
the ability to expand the system over time through network environments
and the ability to take advantage of larger primary and secondary memory
capacities.

The operating system used by the tool (and under which the tool
runs) may exert constraints on an expert system application in the areas
of communication and networking, multi-tasking capability, and the use
of virtual memory. The application environment may also impose
constraints. Government applications may be subject to military
specifications dealing with such things as TEMPEST compliance, hardware,
security, and formal verification. Financial applications may impose
auditing and accountability requirements along with a strong disposition
toward traditional vendors such as IBM. Critical environments such as
nuclear powerplant control may impose severe reliability and

availability constraints.

- 10 -

The transition from the development system to the installed,
delivered system may require interfacing to a network, to other
software, and to live data. In many environments, this must not cause
interruption of service or unavailability of data and may require phased
delivery in which the expert system is phased in in parallel with
existing procedures, so that no data is lost. Tool support for
performing this transition painlessly and safely is therefore an
important evaluation consideration.

The fielding process becomes easier if the tool can encapsulate
hardware-specific aspects of the application (such as sensor input) and
operating-system-specific aspects of the application (such as
input/output (I/0) and communication capabilities). Fielding is
certainly easier if the hardware, operating system, and implementation
language(s) used for the fielded system are the same as those used for
the development system, but this will not always be the case. Language
issues also include the capability of the tool to encapsulate external
calls by permitting applications to call programs or functions in
another language and tool support to insure that the form of these calls
will port to the delivery environment. If the hardware/software
environments differ from development to delivery, then another important
tool criterion is the ability to translate or cross-compile application
code. This may include procedures within the tool itself and those in
the "call-out" language. The evaluation concern is whether this is done
by the tool, available as a service, or requires hand coding.

Issues in fielding from the development to the delivery environment
also include portability of the development interface, such as whether
both interfaces should be the same and, if not, what should be removed
and what must be recoded (e.g., should debugging aspects be removed? Do
graphics interfaces need to be recoded? Do dynamic rule generation
capabilities need to be removed or disabled?). Another concern is with
limitation of the application size due to the hardware and software

constraints of the delivery environment.

-11-

A final issue is whether fielding can be done by a novice user. If
the tool allows end-users to create expert systems, it is an advantage
if the fielding process is sufficiently automated to allow those users
to field their own expert systems with little or no help. Since expert
system technology is typically aimed at application areas that are not
highly formalized or well understood, expert systems are likely to
require change and evolution even more often than traditional systems
(for which life-cycle costs of enhancement and debugging are already
often greater than 50 percent of total system cost). An expert system
is likely to be under development throughout its entire fielded
lifetime, requiring either "field refinement'" or refinement in the
development environment followed by refielding. If refinement requires
cycling back to the development environment, its cost and difficulty
will depend on how well the tool supports the fielding (or refielding)

activity.

Multi-User Support Criteria

Many real-world applications require multi-user access, which in
turn requires support for consistency and synchronization of concurrent
access and contention handling for database (or knowledge-base) updates.
Similarly, tools may need to support multiple views of knowledge bases
to allow different users to see different parts or aspects of a
knowledge base, and to provide different access privileges for different
users.

These kinds of multi-user support may be required by two quite
different sets of users in two different contexts: by multiple tool
users during development of an expert system, or by multiple end-users
interacting with the final expert system. In the former case, the
emphasis is on configuration management, whereas in the latter case it
is on knowledge-base access, but both cases may require concurrency,
contention handling, views, and access privileges. These issues have
not been addressed by most expert systems to date, and few of the

available tools provide solutions to these problems.

Reliability Criteria

Reliability criteria are general software engineering issues that
include availability, reliability and recovery, error reporting,
validation and verification (V&V), and quality assurance. For all these
issues, the relevant criteria for tool evaluation have to do with the
support a tool provides, that is, how it helps a developer build an
expert system that satisfies these requirements.

Availability (i.e., the percentage of time a system is available
for use) and reliability are requirements of the application environment
and apply to software, databases, and network interfaces as well as
hardware. Recovery requires that a system maintain internal consistency
in the face of hardware failures or inconsistent data or data access.
Error handling requires that a system report errors to end-users in
understandable terms; this must apply both to errors encountered by the
application expert system and to errors encountered by the underlying
tool in cases where the tool is present when running the application.
V&V does not refer to formal verification but rather to insuring that
"the right system gets built in the right way"; to support V&V, a tool
must help an expert system developer build confidence in the design and
implementation as it progresses. Support for quality assurance involves
allowing a tool user to test and retest an expert system application
easily, e.g., by making it easy to build test suites, keep failure

statistics, run load tests, etc.

Execution Criteria

In the (highly nonstandardized) jargon of expert systems,
"execution" usually refers to the execution of the target expert system.
Execution criteria include performance, memory requirements, and
integration capabilities. Performance is usually evaluated in terms of
speed and real-time capability (where speed is a function of size and
complexity). Speed criteria are applicable to rule execution, search
space examination, interface interaction, external calls or
communication, etc. Real-time capability is essentially the ability to

guarantee speed requirements. It was noted that tools which implement

- 13 -

expert systems in LISP dialects and perform traditional, synchronous
garbage collection may have trouble meeting real-time requirements.
Some newer LISPs, however, perform garbage collection in background,
which should smooth out the associated delays; in addition, it would be
possible to give LISP programmers explicit control over garbage
collection, though this runs counter to the traditional LISP style of
high-level programming.

Memory considerations include primary and secondary memory
requirements and the need to optimize or reconfigure the memory of the
fielded system by removing parts of the development environment (or
paying the overhead of having unused or disabled tool features present
in the fielded system). There are also memory tradeoffs to be
considered between running in compiled or interpretive modes.

Integration capabilities include (1) encapsulating external
interfaces to the operating system, other languages, databases, external
applications, interprocess communication, asynchronous communication,
and physical devices (i.e., defining them as logical devices); (2)
architectural tool support for asynchronous communication (e.g., data-
directed computation) and consistency maintenance (e.g., truth
maintenance); and (3) "embedability''--allowing an application to be
called as a function by other software or to be preempted by other
processes, and generally allowing the delivered expert system to

cooperate with existing software.

Human-Interface Criteria

Human-interface criteria apply both to a tool itself and to the
delivered expert systems built with a tool. They include (1)
"defeatability" (the ability to turn off selected features of the
interface or of the application/tool environment); (2) interface
consistency across various modules or modes within the tool or
application itself and also between the tool or application and other
preexisting interfaces in the user's environment (e.g., editors,
operating system, etc.); (3) support for implementing help,
documentation, and explanation; and (4) interface construction support
(how well the tool supports construction of application system

interfaces).

- 14 -

The first three of these are fairly self-explanatory. Interface
construction support should include separability, modularity,
embedability, mixed initiative, menus, commands, multi-tasking/windowing,
and graphics. Separability and modularity allow an interface to be
removed or changed independently of the rest of the supplied environment.
Embedability is concerned with the ability of the target system to be
merged into an existing target environment with an existing interface.
Mixed initiative addresses the tool's support for building interfaces
in which the user and the system share control of the interaction. Menu
capability refers to the tool's support for building flexible menu
interfaces. Command capability refers to the tool's support for building
flexible command interfaces (i.e., providing facilities for parsing,
spelling correction, command completion, etc.). Multi-tasking/windowing
is concerned with the tool's ability to take advantage of existing
multi-tasking windowing environments or to support the creation of
such an environment for a target system. Graphics capability refers
to the tool's support for providing graphic explanation facilities
in the delivery environment and for providing other application-specific

graphics.

Maintenance Criteria

Maintenance is another common software development concern. The
nature of expert systems and the kinds of problems they typically
attempt to solve give maintenance special significance, since these
systems often require continual evolution and refinement, even after
delivery. Relevant tool characteristics include (1) tool-supported
configuration management, consistency maintenance (of application code,
documentation, and explanation), and automated management of trouble
reports and change requests; (2) leverage furnished by the tool for
maintenance of target expert systems; (3) language issues (discussed
previously); and (4) the maintenance process itself.

Maintenance support requires the ability to make the explanation
and "introspection" facilities of an expert system evolve incrementally

to show the internal state of the system (e.g., as a trace of rule

- 15 -

firings), to help expert system developers and end-users understand the
system's behavior. Capabilities to support explanation should allow
different levels of user sophistication to address the different needs
of developers and end-users. In addition, a tool should support modular
code development, including techniques for "information hiding" and for
building procedures and packages.

The maintenance process depends critically on whether maintenance
changes require cycling back to the development environment and
refielding or can be made directly in the delivery environment. The
latter allows easier and quicker evolution or fixing of bugs but
requires that facilities for testing, V&V, quality assurance, etc., be
present in the delivery environment (which is rare). A related concern
is whether maintenance of an expert system can be performed by end-
users themselves (or by applications programmers in the end-user
environment) or requires the services of the knowledge engineers who

originally developed the system.

ASSESSMENT TECHNIQUES

Working Group 2 focused on assessment techniques (which at the time
we called "evaluation methods") for evaluating expert system tools. A
group report was produced as well as individual notes. A short abstract

of each note is given below.

Abstracts of Individual Notes
Richard Fikes wrote on '"Methodology for Evaluating the Functional

' In his note, he discusses functional

Capability of Tool Components.'
capability benchmarks, gives an illustrative problem fragment, and
describes how such benchmarks could be used for evaluation. He notes
that certain characteristics such as debugging aids and the degree of
difficulty in learning the tool cannot be tested with these kinds of
benchmarks.

Steve Hardy addressed the issues in the development of expert
systems by programmers and intended his note as a guide for developing

criteria for evaluating expert system shells. He lists four areas of

issues in expert system development and the dimensions over which they

- 16 =~

should be considered. He emphasizes the fact that in developing the
evaluation criteria we must keep the intended user and purpose in mind,
since almost all expert systems to date have been demonstration
prototypes built by AI specialists.

Charles Riese's note included three topics: ideas about assessment
techniques, a discussion of test cases for expert system tool
evaluation, and a discussion of building an expert system to be used in
the evaluation of expert systems.

Don Waterman's note describes different contexts for considering
the tool evaluation problem and looks at important capabilities in each

context and at assessment techniques for evaluating those capabilities.

Group Results

Our own work prior to the workshop had convinced us of the need for
further thought on the subject of assessment techniques, i.e., ways of
actually applying metrics to tools, and we had our own list of potential
techniques, which we introduced into the working groups to stimulate
discussion. Many of these same ideas were broached independently by
other attendees, and several new ones were added. (For example, we
considered the idea of a consultation expert system to advise a
prospective tool user on how to evaluate tools throughout the project;
this idea was also raised by several of the attendees at the workshop.)
In what follows, we do not distinguish which ideas predated the workshop
but simply present them all as "results.”
The workshop produced seven potential assessment techniques that

might be used in the evaluation of expert system tools:

C Comparing tools to a standard

. Conducting user interviews

C Asking users to fill out questionnaires

. Applying benchmark problems

. Performing case studies

= Gathering a library of expert system efforts

C Developing an expert system tool evaluation consultant

- 17 -

Comparison to a Standard. Using this technique, one would
compare a capability of a. tool with what some standard language (e.g.,
Common LISP) offers, or compare a feature of the tool with similar
features of some ideal tool or of other tools (e.g., forward chaining in
a given tool with forward chaining in ROSIE). This would produce a
comparison of each feature (or capability) of the tool with the
corresponding feature (or capability) of some baseline technology.

This technique presents several problems. The choice of a baseline
is not an easy task in such a young technology. A baseline such as
Common LISP may not be particularly useful for differentiating tools,
since most or all tools would exceed its capabilities by a wide margin,
which would nevertheless be difficult to measure with any precision.
Comparison to an "ideal" tool presents the problem of defining this
ideal.

Comparing tools with one another on the basis of tool
characteristics and features would yield a sort of Consumer Report™
(deemed quite desirable by attendees of the second workshop); but such
comparisons are difficult because characteristics may have the same name
in different tools but be functionally quite different (this may lead to
inadvertently comparing apples and oranges simply because they have both
been named tangerines). A reviewer making such a comparison (and even
moreso, a reader trying to interpret one) would need to have an in-depth
understanding of all the tools being compared.

Interviews. Interviewing people who have completed long-term
development efforts in order to learn from their experience with the
tool(s) they have used is usually done informally by developers shopping
for tools, but is generally limited to an arbitrarily chosen set of tool
users (i.e., personal friends or other developers within the same
organization). To be useful for evaluation, this technique would have
to be applied systematically and objectively, and the results would have
to be made widely available. It would also require continual updating

to include newer and more relevant experiences.

- 18 -

User Questionnaires. This technique is analogous to interviewing
tool users but is made more formal by the use of a standard
questionnaire. Information collected from various users of a tool would
be kept in an easily accessible (and continually updated) database. To
be of maximum utility, questionnaires could be completed at several
points during the development of an expert system; this would provide
valuable information on long-term efforts and on how tools support the
overall development process.

Benchmark Problems. Benchmarks are special problems developed to
test the capabilities of an expert system tool. Problems would be
stated in implementation-independent terms and could be solved by
vendors offering expert system tools and/or by prospective tool users.
Solutions for each tool would be published, along with such quantitative
measurements as the time required to implement the solution, the
resulting system size, etc. Solutions would be evaluated primarily on
the basis of style and conceptual clarity, and only secondarily on the
basis of their quantitative measurements. Specific criteria for
evaluating solutions to given benchmarks would be developed iteratively
in the literature, and solutions would attempt to optimize for these
criteria as they evolve.

A small benchmark problem should be capable of solution in hours or
days. It would consist of an informal statement of the desired
capability, a specific problem fragment for testing the capability, and
a description of the role the capability plays in solving this problen.
Small benchmarks could be used to test such things as the expressive
power of representation languages and the execution efficiency of
various programming paradigms.

Benchmarks for testing functional capabilities could be obtained
from tool vendors by asking them to describe what they feel are the most
important capabilities offered by their tools. Each vendor wculd
explain each capability in terms of the kinds of applications it serves
and would provide a corresponding benchmark problem to test that
capability, along with one or more solutions to that problem using the

vendor's own tool. Each solution would be accompanied by a statement of

- 19 -

the criteria that solution attempts to optimize, thereby minimizing the
danger of judging a solution by inappropriate standards. The following

is a skeletal example of a small benchmark problem:

Experts may organize their domain knowledge around taxonomies:
hierarchical structures in which properties of an entire class
can be stated just once and then "inherited" by members of
that class or any subclass.

For example, all squares are rectangles and all rectangles are
geometric figures. The area of any rectangle can be computed
by multiplying its height by its width. The width of a square
equals its height.

Represent this knowledge and use it to compute the area of a
square called "object-22," with a height of 5 meters.
Rectangle height must be a number. Extend the representation
so the system will reject nonnumeric heights for rectangles.

A large benchmark problem is one that can be solved in weeks or
months. It would consist of a detailed description of the problem being
addressed, a checklist of questions to which the implementer must
respond during the development process (such as, "How hard was X to
implement?" or "How long did it take to implement Y?"), and follow-
up interviews to obtain subjective evaluations. An example of a large
benchmark problem, that of locating and diagnosing a spill in a chemical
plant, is presented in detail in Hayes-Roth, Waterman, and Lenat (1983).

As a result of the discussion of benchmarks, we solicited medium-
scale benchmark problem statements from each of the vendors after the
workshop. In order to provide a form and example, we first prepared our
own sample benchmark (given in App. C) and distributed this to the
attendees. In response to this request, we received a single vendor-
generated benchmark proposal (from Radian Corporation), which is also
reproduced in App. C.

Case Studies. A case study is a controlled recording of an expert
system development effort that attempts to capture the relevant aspects
of the tool being used. Unlike a benchmark, it focuses on a real
development effort to solve a real problem, rather than dictating the

problem to be solved, and is therefore not fully controlled. It seeks

- 20 -

to instrument the development process in a real case, thereby avoiding
the artificiality of an oversimplified problem. It would consist of a
methodology for recording the history of an expert system development
without imposing undue constraints on the developers (who would be
expected to resist any overhead introduced by the instrumentation
process).

A case study would be presented as a description of the problem
being solved, along with a development history that would include both
objective facts (e.g., overall development time, time to reach
particular milestones, number of rules, size of knowledge base) and
subjective factors (e.g., ease of use, naturalness of knowledge
representation, problems encountered, successes obtained). There would
also be post-development interviews. Case studies would be indexed by
application type, domain, and various features of the development
environment to allow prospective tool users to evaluate the
applicability of a given study to their own problem and environment.

Library of Expert System Efforts. This would consist of a library
of information about expert system development efforts, organized into a
database that could be searched to find projects similar to a proposed
project. Such a library would require indexing similar to that proposed
for case studies above; it might, for example, match the "signature' of
the proposed project (i.e., the characteristics of its application and
development domains) against those of items in the library. The library
could contain entries from all other categories of evaluation
techniques: comparisons, interviews, questionnaires, benchmarks, and
case studies, in addition to relevant literature, conference
proceedings, technical papers, etc.

An Expert System for Tool Evaluation. A consultation and
diagnostic expert system could be developed that would take a complete
description of the proposed application as input from its user and
produce as output issues to consider, questions to answer, and
capabilities, features, and metrics that might be useful for evaluation.
This expert system would apply rules based on tool criteria and problem
attributes and access the library of expert system efforts as part of

its knowledge base.

- 21 -

NOVICE USERS

Working Group 3 focused on criteria that would be relevant to
choosing an expert system tool for use by 'novices' developing a
prototype expert system. In our context, & novice is someone acting as
a knowledge engineer who has no AI expertise. This may be a domain
expert (with or without any computer background) or a "vanilla"
programmer, i.e., one who is competent in some general-purpose
programming language, but is not an AI programmer. (These definitions
of novice and vanilla programmer are not meant to be judgmental; they
are merely convenient jargon for use in this Note.)

The group developed the following set of categories of evaluation

criteria:

O Integration and embedding

O Application and domain types

O Problem scale

. Multiple/single user development
®* Development environment

. Tool learnability

s Explanation

. Cost

¢ Future of the tool

s Support

. Techniques to help in tool selection

. Other issues

Integration and Embedding

These issues are more difficult to assess and address for a
nonprogrammer domain expert than for a vanilla programmer (for whom
there will be some carryover from building traditional systems). The
issues involve accessing existing software packages (e.g., databases,
spread sheets, statistical packages, graphics) for both input and
output. This can be done either from within the tool or by accessing

the tool from within an existing environment that provides access to

- 22 -

these other packages. In some cases, it may be possible to simulate
this integration within the tool itself, though this may not field well
if the ultimate target environment is different from the development
environment. The crucial criteria here are whether and to what extent a
tool provides "hooks" into applications libraries or into other
programming languages to allow implementing interfaces to other

packages.

Application and Domain Types

Novices need help in understanding which applications and domain
types may require special tool characteristics (such as support for
multiple viewpoints, time sequences, histories, truth maintenance, real-
time access to data, etc). There is currently a great deal of work
going on in the research community to produce canonical
characterizations of problem types, but consensus has not yet been
achieved in this area. In the absence of standard characterizations,
novices must at least be able to access examples of similar applications
that have been developed by other novices (with similar backgrounds and
experience) using the tools under consideration. A library of case
studies and expert system efforts would probably be the most useful aid

here.

Problem Scale

The novice has to be aware of many issues dealing with the scale of
the problem. It is important to understand what problem sizes are
reasonable for particular tools or, conversely, whether a given tool is
adequate to support a given problem. Similarly, it is important to know
whether a proposed application will perform at an acceptable level (with
respect to speed and memory) on the target machine, using a given tool.
If a problem requires building a large knowledge base, the tools to be
considered must allow building and maintaining this knowledge base and
must provide support for modularization (e.g., of code and rulesets). A
related concern involves the ease with which a prototype solution can be
scaled up to a fully developed system, and whether the same structure

and approach will be appropriate for both. The safest course for a

- 23 -

novice would probably be to consult case studies and vendor references
to ascertain whether other novices have built similar systems of similar

scale.

Multiple/Single-User Development

Novices working in a multi-user development environment may require
special tool support for knowledge acquisition, identifying
inconsistencies in a knowledge base, reporting system status, and
building expert systems to support multiple end-users. The tool should
make it easy to detect logical inconsistencies and inconsistent use of
symbols in the knowledge base. Where the novice developers are the
domain experts, this translates into a criterion of "knowledge
acquisition" support; in any case, it requires knowledge-base
configuration management to coordinate the activity of multiple
developers. The definition of consistency in the knowledge base may
also depend on whether the tool can support multiple results or
conclusions: 1if so, novice tool users must be made aware that
unintended inconsistencies may go undetected. Novices who are domain
experts may also have heightened needs for knowledge-base browsing
(e.g., to reconcile differences among multiple experts) and for the
collection and maintenance of development history (particularly for
nonprogrammers) .

In addition to the above issues for multiple developers, if the
target application is intended for multiple end-users, the tool may need
to allow concurrency and to control contention; similarly, it may need
to allow alternative views of the knowledge base and support knowledge-
base merging. If the developers are nonprogrammers, their reliance on a
tool's built-in support to solve software engineering problems such as

these will be even greater.

Development Environment

The novice tool user's main concerns with the development
environment will be with responsiveness and the functionality of the
user interface. For novice developers serving in the role of domain

experts, the task of "knowledge acquisition" (i.e., entering knowledge

- 24 -

into the knowledge base) and knowledge representation may require
specialized editing modes or support for various forms of knowledge
entry (e.g., natural language, rules, examples, diagrammatic input,
taxonomies, axioms, equations, assertions). Similarly, explanation,
tracing, and debugging facilities (e.g., the ability to browse through a
trace or to obtain English-like explanations) are crucial for novices,
even seasoned programmers who are not familiar with the expert system
approach. For nonprogrammers, a tool must also provide on-line help
facilities, support for the graphics needed by the application, and a
high-quality user interface which is robust, user-friendly, and
ergonomic.

Novices are likely to be fairly intolerant of slow response. The
development environment should interact quickly with the tool user when
adding knowledge, editing, testing and rerunning with trivial changes,
performing error detection and consistency checking, and loading and

saving knowledge bases.

Tool Learnability

A novice must consider a number of issues related to learning to
use a tool. The primary criterion here is the time it will take to
learn to use the tool in order to become productive, proficient, or
expert, or to be able to solve the problem at hand. To evaluate the
available means to this end, the novice must consider the materials and
support that are available from the tool vendor, e.g., tutorials (both
documented and on-line), documentation, problem/program samples,
training, etc. It is particularly important to determine whether these
are intended only to teach the user to use the tool or to go beyond that

and show how to solve problems.

Explanation

Explanation support must be evaluated with particular care, since
in the absence of such support in a tool, building an explanation
facility for the target expert system may be beyond the reach of most
novices. It is useful for the tool to provide explanation in the

development environment for knowledge-base tracing and debugging; but

- 25 -

tools that provide such facilities do not always allow them to be
exported easily into the target delivery environment. The novice must
be careful to avoid such "dead ends" in the development process by
loocking ahead to fielding.

For an explanation facility to be useful to novices (both during
development and after delivery), a tool must allow explaining any
conclusion or action (along both "HOW" and "WHY' dimensions) in detail
appropriate for the novice (e.g., presenting its explanations in English
with helpful diagrammatic representations, and supporting the user in
browsing through the explanation). In addition, it should be easy for
the user to request and receive explanations at any time (e.g., during
development, during consultation with the expert system, or after

conclusions have been reached by the expert system).

Cost

Not surprisingly, the group felt that cost often functions as an
initial filter of the tools to be considered. Cost considerations should
begin by examining the startup costs of using a new technique or tool
that is unfamiliar to a novice user. Given the difficulty of evaluating
tools (especially for a novice who has little background on the
subject), the cost of performing an evaluation to select an "optimal"
expert system tool must be weighed against the tool's potential payoff.
Furthermore, the novice must determine whether the cost of solving the
problem using an expert system tool will yield a larger payoff (savings)
than a more conventional solution. This requires evaluating both the
expected cost of the tool (throughout its useful lifetime for the user)
and the cost of the development effort (including maintenance) with and

without the tool.

Future of the Tool

One very important aspect in selecting a tool is understanding the
future growth directions the vendor intends for the tool and the future
of the tool in the user's organization. The novice tool user must
assess the future use of expert system tools in general within the

organization and must consider which other problems the selected tool

- 26 -

might be used for (including likely changes or extensions to the problem
under consideration). A related issue is how well a tool fits into the
existing computing environment. If the fit is not very good, the future
directions of both the environment and the tools under consideration
should be examined to see if there is likely to be a better fit with
future versions of any of the tools.

The novice must also try to ascertain whether a chosen tool will
allow scaling up a prototype problem solution into a deployable system
appropriate to the expected delivery environment. This involves issues
such as reliability, security, and hardware compatibility. It is
necessary to evaluate the limitations of the tools being considered and
to assess the future of those tools (i.e., does the vendor have plans to
solve important limitations and when?). Finally, it is vital to make

sure that knowledge bases can be preserved as a tool evolves.

Support

The novice tool user must carefully project the kinds of support
that will be needed in the development and deployment phases and
evaluate whether the vendor (or independent consultants) can supply the
required support at an affordable cost. Support includes detailed
documentation, advanced training courses, help with customizing the tool
(or an expert system written with the tool), and help with porting

applications to their target delivery environments.

Techniques to Help in Tool Selection

The novice tool user may utilize case studies to help select a
tool. To be useful to novices, case studies of expert system
developments should be independently conducted studies of real
applications that have been developed by other novice users. They
should include complete development histories (both subjective and
objective), should be indexed by application type and domain over a wide
range of problems, and should contain indications as to which features
of the tool helped or hindered development. Case studies are most
useful if they adhere to a standard methodology for recording and

reporting results.

- 27 -

Other techniques suggested to help novices in tool selection
include getting help from vendors, expert system courses, etc.; use of
vendor demonstrations to show how a tool can be used by a novice and
what can easily (and possibly) be done using the tool; contacting other
users of a tool for references; and using a feature list as a guideline
to understanding what features relate to solving the problem at hand and
how easy it is to use those features (though this is subject to the

caveats stated previously about comparing dissimilar features).

Other Issues

There remain several issues relevant to novice tool users that do
not fall into the above categories. It is often claimed that one of the
primary benefits of using expert system technology to solve a problem is
that it leads to a better understanding of the problem (and the entire
domain) by forcing knowledge to be structured and represented
explicitly. In some cases, novices may consider this an important
benefit of (and motivation for) using a tool, e.g., to train new domain
experts. They may therefore evaluate a tool partly on the basis of how
well its representation and methodology satisfy this criterion.

Novices should also be concerned with how well (or poorly) a tool
hides the underlying language and environment. If solving the problem
at hand will require escaping to the underlying language or environment,
it is important to evaluate how difficult that will be.

Finally, the novice may be concerned with whether an understanding
of Al techniques (e.g., certainty factors, truth maintenance, meta-
knowledge) is required in order to use a particulér tool to good
advantage. In most cases, it will be an added burden for a novice to
learn this extraneous subject matter, though in some cases, learning

about Al may be one of the motivations for using an expert system tool.

OTHER RESULTS

This section presents additional ideas and concepts that emerged

from the briefings given by the developers.

- 28 -

An interesting and controversial topic offered by Charles Riese
(Radian Corporation) was that the evolution of an expert system should
include the conversion of rule subsets into utility algorithms. An
important tool characteristic would then be the support of an automatic
path that could convert heuristic knowledge into algorithmic knowledge.
Riese also expressed the view that when the expert system represents a
small portion of the entire application, the selection of an expert
system tool sﬂould have a correspondingly small influence on hardware
and software decisionms.

Steve Hardy (Teknowledge) expressed the view that tool builders
need to treat expert system tools like other software systems (e.g,
DBMSs) and develop a product philosophy that emphasizes good customer
relations. This includes offering in-depth customer support,
understanding the customer's business and how an expert system will fit
into the environment and problem solution, becoming management
consultants as well as software engineers, and offering extensive
training. Proposed future tool characteristics include expressing the
relationships between data in a nonprocedural way; being able to embed
an expert system in a total system to DoD specifications (e.g., as an
Ada implementation with no rotating storage on Mil Spec hardware); the
ability to view a tool as a subroutine from conventional languages; and
the ability to handle tools that are currently separate (such as expert
systems, database management, and statistical packages) as libraries
instead of separate tools.

Richard Fikes (Intellicorp) emphasized that knowledge acquisition
is the bottleneck in the development of expert systems. What is needed
is to let domain experts communicate with the tools in ways that are
natural to them (e.g., taxonomies, logical assertions, structural
models, diagrams, situation-specific decision rules) with a minimal need
for them to reformulate their knowledge. Reasoning needs to be able to
answer multiple types of questions and perform multiple types of tasks.

To do so requires representing knowledge in a task-independent fashion.

- 29 -

Expert system solutions require using multiple tools that need to be
well integrated with each other and that are capable of integration with
other software (a point made by all the developers).

David Hornig (Carnegie Group) presented the philosophy that the use
of an expert system tool should increase the productivity of application
programmers and that applications written with the tool should run
reasonably well. He expressed goals for the tool developers that
included making tools easy for both experts and beginners to use,
avoiding precipices (that is, being continuously extensible), and being
capable of supporting large systems, while yielding small solutions to
small problems.

Lowell Hawkinson (LISP Machines, Inc.) discussed the usability of
tools, including allowing end-users to maintain knowledge bases, not
requiring the end-user to know LISP or AI, providing user interfaces
that combine natural language and graphics, representing knowledge in a
way that is readable by the user, giving users control over consultation
sessions, and providing high-level domain modeling tools and simulation
facilities. Complete and powerful tools should include learning
capabilities and hierarchical modeling of objects. Application to real-
time problems requires the ability to work on many tasks concurrently, a
built-in ability to handle time, and keeping histories of data and
functions.

Mark Wright (Inference Corporation) discussed the need for data-
directed reasoning (including distributed problem solving and
monitoring) and for rule-based, modifiable programs, opportunistic
problem solving, and dealing with unstructured problems. Representation
capabilities should include reasoning about the search space, multi-
level search spaces, and data-directed negation. Delivery system
characteristics include the need for cheap machines, the ability to
interface to existing systems (e.g., IBM OS written in assembler),
C-based tools, and validation (which he acknowledged as an unsolved

problem).

- 30 -

Anthony Magliero (Software Architecture & Engineering) discussed
the importance of the operational data-processing setting, the ability
to integrate existing information sources, the ability to operate on
in-place equipment, the use of a prototype as an integral part of
development (rather than as a throwaway), the need for verification and
validation aids, the need to generate runtime packages to operate in
many different environments, the need for multi-user support for a given
body of data and knowledge, the use of abductive reasoning in
explanation, the ability to develop systems based on high-level
descriptions or requirements analysis generated by application
specialists, and the ability to perform nonclassification reasoning by

constructing solutions.

- 31 -

Il. TOOL USERS' WORKSHOP

OVERVIEW

On November 3-4, 1986, we held a second workshop at The RAND
Corporation for expert system tool users. Whereas the participants in
the developers' workshop were technical representatives of commercial
expert system tool vendors, participants in this users' workshop were
selected on the basis of their experience in building expert systems and
choosing expert system tools. Our intention was to bring together a
representative cross-section of expert system tool users to evaluate,
critique, and revise our tool evaluation framework and methodology.

This section summarizes the results of this two-day users'
workshop. We first discuss the participants and summarize the events of
the workshop. Then we discuss the results of the workshop, presenting
both the conclusions drawn from a number of working groups and the

general concerns voiced by participants.

Participants

We sent an announcement of the workshop to over 100 expert system
tool users, and enclosed an initial questionnaire requesting information
about themselves, their projects, and the expert system tools they had
used. (This questionnaire is reproduced in App. B.) We were surprised
by the overwhelming response and interest generated by this initial
inquiry and were forced to turn away a number of users due to logistic
limitations and our desire to keep the workshop small.

We selected 32 participants for the workshop, using the results of
our initial questionnaire. We filtered potential participants on the
basis of the tools they had used, the domains and tasks they had worked
on, the scope and complexity of their projects,.their experience level,
and their affiliation. We sought a cross-section along all these axes,
with a slight bias toward DoD contractors, based on the charter of our
project. Although our 32 participants may not have been a truly

representative sample of expert system tool users, we felt a group of

- 32 -

this size would be adequate to provide a diversity of useful insights,
while being small enough to keep the workshop manageable.

The attendees covered a wide range of experiences. Some had used
commercially available tools (ranging from high-end, LISP-machine-based
tools to low-end PC-based tools), while others had built their own "in-
house" tools. They represented many domains, including the military,
aerospace, finance, and manufacturing, and many different types of
tasks, including fault diagnosis, planning, classification, design, and
monitoring. They were involved in a wide range of projects that varied
in terms of development team size, total level of effort (i.e., number
of person-years), system size, and stage of development (e.g.,
prototyping, developing, fielding). Their experience levels also
varied, though to insure some commonality of background, we invited only
users with some programming experience (though not necessarily much AI
experience). They represented both research organizations and
commercial companies.

After winnowing the participants, we sent them a second, more
comprehensive questionnaire (also reproduced in App. B). A list of
participants is given in App. A, and the results of both questionnaires

are discussed in App. D.

Workshop Activities

Jeff Rothenberg of RAND opened the workshop with a presentation of
the project's charter and goals and a discussion of our evaluation
framework and methodology. The results of our developers' workshop were
also discussed, along with their impact on our framework. The
presentation then summarized the results of the first questionnaires
returned by the attendees, to give the participants an overview of who
was present and what their experiences were.

The remainder of the first morning was devoted to the attendees'
completing the second questionnaire (which not all of them had received
prior to the workshop), as well as to having them meet each other and

interact informally.

- 33 -

The bulk of the workshop was spent with the participants divided
into four working groups of about equal size. The diversity of the
attendees provided an extremely rich interaction and exchange which
produced a great deal of useful insight. Each group included a member
of the RAND project, who recorded what was said and kept the discussion
from ranging too far afield.

During the first afternoon, these groups discussed various
dimensions of our evaluation framework as well as other issues relevant
to expert system tool evaluation. Each group was given copies of all
the completed questionnaires and began by compiling the parts of the
questionnaires pertaining to the dimensions they were discussing, so
that these results could be used to guide the discussion. The groups
broke up in the late afternoon, and a member of each group presented a
summary of the group's results to the full workshop, as discussed in the
summary of results below.

The second morning began with a briefing by Dr. John Marinuzzi from
Los Alamos National Laboratory. He described an Al training facility
and curriculum developed by the Los Alamos Knowledge Systems Laboratory
in conjunction with Sandia National Laboratories to bring staff members
up to speed in AI tools and techniques. He expressed his conviction
that without such support, even an intelligent and highly motivated
scientist is likely to fail in the attempt to become a proficient AI
programmer, because the tools and techniques evolve faster than an
unsupported individual can learn to use them. The Knowledge Systems
Laboratory is an attempt to collect a critical mass of tools and
expertise to be used in training technical staff members in expert
system knowledge engineering.

During the rest of the second day, the participants were divided
into groups according to their applications areas, i.e., aerospace,
finance, military, and commercial applications. On this day, the group
discussions were left open, providing the participants with a forum for
voicing their own opinions and concerns about expert system development
and the tools required for their applications. These discussions

focused on such topics as integration of expert systems into existing

- 34 -

environments, concerns of new tool users, definition of the "ideal"
expert system tool, and methodologies for building expert systems. Late
in the afternoon, the groups again presented summaries of their

discussions, concluding the workshop.

SUMMARY OF RESULTS

We first present some general issues that the participants
identified, along with those criteria that they felt had the greatest
discriminating value in narrowing the choice of a tool. We then discuss
the results in terms of the five dimensions of our framework, commenting

on various aspects of each dimension.

General Issues
Evaluation Caveats. A number of participants brought up general

issues about evaluation, listed below:

* VWho is the evaluator?

* Who will measure and monitor the accuracy of an evaluation to
detect biases?

. Who is the evaluation for?

o Will the evaluations be timely? How will they be kept up to

date?

The preferred choice for an evaluator is a conscientious, impartial
reviewer. In particular, evaluators should be free from biases and
invulnerable to "political" pressures that can make selection a foregone
conclusion and turn evaluation into a sham.

Concerns vary among different user groups, e.g., managers,
technical staff, end-users. To be of value to a certain group, an
evaluation should address that group's concerns without including
superfluous information.

One recommendation (which our project had already taken) was to tie
evaluation to general capabilities rather than to specific tools, so

that evaluation results will not become obsolete too fast.

- 35 -

Discriminating Criteria. Another issue that was raised had to do
with tool selection and ways of pruning the space of tools so that an
evaluation can focus on a small set of tools. The criteria listed below
were considered to be particularly effective for discriminating among
commonly available tools, thus narrowing the set of tools to be

considered:

C Cost
® Avaijlability of tool on required hardware
< Integrability

e Range of applications

The tools to be considered may be quite different, depending on a
project's software budget and other available resources (such as personnel
and computation power). Only a limited set of tools may be available for
a given hardware environment (e.g., LISP machines, mainframes, or PCs).

The need to integrate a tool (or an expert system built using a
tool) with other software or hardware may sharply constrain the choice
of tools. Choosing a tool to build a single simple application is quite
different from choosing one that will be used for a wide range of

applications.

Application Characteristics

The users' workshop resulted in significant expansion and fleshing-
out of those aspects of the application characteristics dimension that
deal with the problem for which a tool is being used. There are many
differences, some subtle, in the requirements for different expert
systems that may make a tool that is well suited for one not very
effective for another. For example, desirable tool characteristics for
a chemical analysis system may differ from those for monitoring a
manufacturing plant. Similarly, a simulation task may have different
requirements from a design task. By examining the problem to be solved,
one can identify capabilities relevant to tool selection. The following

application characteristics were discussed at the workshop:

- 36 -

. Problem domain

. Problem type

. Nature of domain knowledge

. Operational constraints

* Formal properties of the problem
N Problem size

® User-machine interaction

O Intended user community

O System autonomy

Q Development team characteristics

Problem Domain. The problem domain is the area of knowledge to
which the expert system will be applied. Participants agreed that
grouping problems according to problem domain is helpful. For example,
tools for a mathematical domain need the capability to do arithmetic
processing, while CAD/CAM (Computer Aided Design/Computer Aided Manufac-
acturing) systems require good graphics facilities. These generalizations
are useful in choosing the capabilities to concentrate on in tool
selection, although they are not always relevant. The following list of

problem domains is representative of those enumerated at the workshop:

* Aerospace

* Agriculture

¢ Business management

e CAD/CAM

* Chemistry

* Computer networking

* Earth sciences

¢ Electronics

* Engineering

* TFinance (risk, loan analysis)
* Geology

* Information management

* Law

Maintenance/repair
Manufacturing
Marketing/sales
Mathematics
Medicine

Military science
Physics

Resource management
Risk management
Software engineering
Space technology

Telecommunications

- 37 =

Problem Type. Problem type refers to the generic category of
knowledge engineering application (Hayes-Roth, Waterman, and Lenat,
1983) addressed by a particular expert system. Participants agreed that
considering the kind of problem would benefit tool selection by helping
to focus on specific capabilities. For example, an expert system for
monitoring requires a tool with real-time reaction capability, whereas a
simulation system requires a tool that provides temporal representation.

The following problem types were developed at the workshop:

* Analysis * Interpretation

¢ C(Classification * Monitoring

* Conceptual modeling ¢ Planning

¢ Control ® Prediction

¢ Data fusion ¢ Prescription

¢ Data tracking * Repair

¢ Debugging * Resource allocation
¢ Design * Risk management

¢ Diagnosis ¢ Scheduling

¢ Forecasting ¢ Simulation

¢ Intelligent database access

It is important to note, however, that few of the applications
discussed at the workshop involved only a single problem type: most
were a composite of subtasks involving several different problem types,
making such characterization difficult. In addition, lists like the one
above contain items at many different levels of abstraction (for
example, debugging can be considered a special case of diagnosis,
whereas simulation can involve nearly every other item on the list).
For these reasons, the workshop attendees were skeptical about the
chances of arriving at a meaningful list of problem types that are
independent, primitive, and useful.

Nature of Domain Knowledge. The nature of domain knowledge was

introduced at the workshop as another factor to consider in selecting an

- 38 =~

appropriate tool. For example, if the knowledge in the application
domain is incomplete, unreliable, or uncertain, the tool may need to
support uncertainty propagation or fuzzy logic. If experts are not
available locally, a tool that can be brought to them may be more

attractive than one that is tied to a stationary mainframe computer.
Domain knowledge characteristics enumerated during the workshop are

shown below:

Knowledge source
Experts
Field data
Algorithms
Literature
Expertise availability
Expense
Location
Willingness
Agreement among experts
Consensus
Resolution of discrepancy
Sufficiency of expertise
Stability of data/knowledge
Incomplete
Unreliable
Uncertain
Frequently updated

Time sensitivity

Operational Constraints. The conditions under which an expert
system is to work (its operational comstraints) must also be considered
during tool selection. A system which must run on battery power in the
field has different support requirements from one that will operate in

an air-conditioned office. Such constraints include:

- 39 -

* Execution speed

O System integration and compatibility

O Real-time operation

. Physical environment (controlled-climate, office, hostile)
. Hardware portability

Q Verification/proof of correctness

The integration issue received special emphasis at the workshop and
is dealt with in depth in a later section.

Formal Properties of the Problem. Formal properties of the
problem account for the relationship between general problem
characteristics and tool features that aid the construction of systems
to attack such problems. A problem that has a strong algorithmic
component in its solution may benefit from a standard programming-
language approach rather than a heuristic one. Some tools are adept
with numbers and formulas, while others have rich, expressive languages
for representing objects and their relationships. The following is a

representative selection of such properties:

. Problem decomposability
. Algorithmic/heuristic

. Symbolic/numeric

Problem Size. The problem-size component covers considerations of
knowledge-base size and complexity. Key issues raised at the workshop

are listed below:

a Domain size

e Extent of coverage

O Coverage depth

Q Representation granularity
O Knowledge base organization

O Knowledge base access

- 40 -

Prime concerns are whether or not a given tool will handle the target
knowledge base and whether adequate response times will be realizable.
User-Machine interaction. The nature of user-machine interaction
was perceived as a critical factor in expert system development and
utility. Both the interaction between the system builder and the tool
and between the end-user and the target expert system were considered.
Desirable interface capabilities included graphics, sound, and mouse-
entry. Emphasis was placed on how a finished expert system will appear
to the end-user and (if the tool does not provide an adequate interface)
how much effort the system builder must expend to enhance the interface.
Intended User Community. Potential users of an expert system are

shown in the follewing list:

A Domain expert

. Computer-naive professional (with minimal computer experience)
. Office clerk

e Programmer

C Al expert (acting as a knowledge engineer)

Participants felt that the intended user community greatly influences
the interface, especially the explanation facility and knowledge
acquisition facility. The tool needs to provide proper levels of
explanation for all potential end-users as well as for the expert system
developers. The interface should be simple enough to use easily, and
powerful enough so that it is not frustrating.

System Autonomy. The issue of system autonomy is concerned with
the role of the fielded expert system. Two possibilities explored at
the workshop were (1) the use of an expert system as a decision aid and
(2) the creation of an autonomous expert system. Among the issues
discussed were the need for graceful interaction of a decision aid with
users, the need for a decision aid to be able to ask questions clearly,
and the question of how to monitor the performance of an autonomous

expert system.

- 4] -

Development Team Characteristics. There was a lack of consensus
among the workshop participants about the importance and utility of
development team characteristics for tool selection. One point of view
held that the people involved in building an expert system are part of
the overall environment and that their experiences, strengths, and
weaknesses should be considered in choosing a tocl. For example, if key
personnel have experience with a particular tool, some of its
shortcomings may be mitigated by the reduced overhead of not having to
learn a new tool. Similarly, it may be essential to choose a tool that
supports a computer-naive interface for knowledge acquisition from
domain experts, depending on the makeup of the development team.
Another viewpoint was that a development team is often brought together
after a problem is understood rather than as a constraint or
characteristic of the application, and that the team's characteristics

should therefore not be used in tool selection.

Tool Capabilities

In general, the participants agreed with the capabilities and
features we had enumerated prior to the workshop. However, they felt
that an evaluation should consider capabilities only after narrowing
down the set of candidate tools (i.e., after filtering by price,
availability of required hardware, etc.).

Specific capabilities are discussed below with comments, criticisms
and recommendations extracted during the workshop. This is not intended
to be an exhaustive list. The first four capabilities are arranged in
order of relative importance, while the others, about which the group
had mixed feelings, are listed alphabetically.

Knowledge Acquisition. While considered too broad a topic to be
captured by a single capability, knowledge acquisition was perceived by
many to be something that is largely missing in current tools, yet is in
the critical path of future expert system work. It was also suggested
that if and when automated knowledge acquisition becomes a reality, it

may be particularly difficult to measure its quality and effectiveness.

- 42 -

Explanation. This capability was ranked high, apparently because
few of the participants felt it was adequately supported by any of the
features of existing tools. There was a desire for multi-level
explanation that varies according to end-user types (e.g., novice to
expert), presentation styles (e.g., textual or graphic), scope and
function (e.g., summary, detailed report, or tutorial), and audience
types (i.e., expert system developer or end-user).

The group also felt it was desirable that explanations be more than
just a summary of actions and inferences: that is, the reasons for
those actions, ideally expressed in terms of a model of the domain,
should also be available. Finally, there was a desire by some to have
program access to the explanation facility, giving target systems better
control over their explanations.

Internal Access. It was felt that a tool should at least provide
an escape to its underlying implementation language. Ideally, it should
also provide access to (and control of) various internal parameters.
While there was concern that such a capability might degrade the
integrity of the tool and that this might greatly complicate porting to
the delivery environment, internal access was seen as critical to a
tool's extensibility.

External Access. This capability was viewed as most important by
those participants whose expert system projects had reached a relatively
high degree of maturity and who were now confronted with the problem of
integrating their systems into an existing computing environment.
Subsidiary capabilities included communicating with external software,
receipt of interrupts from external systems, and warnings for
incompatible access requests.

Arithmetic Processing. This capability was viewed as necessary but
not vital, and less important than handling knowledge. There was
disagreement as to whether supporting features (e.g., arithmetic
operators) should be embedded in the tool if they were already available

through the external access capability.

- 43 -

Certainty Handling. There was some disagreement about exactly
what this capability implies (e.g., ranges vs. discrete points) as well
as about its usefulness. Some users felt that it was important for
diagnosis but meaningless for planning, and some thought it was
generally useless and misleading. There was also a question about why
such a controversial capability should be built into a tool when, using
internal access, a system developer should be able to implement any
preferred style of certainty handling.

Concurrency. This capability was seen to have three aspects
related to performance, problem, and solution, respectively.
Performance aspects focus on features that use concurrency to improve
system speed. Problem aspects focus on situations where a system must
interact with multiple external "real-world" processes simultaneously.
Solution aspects focus on features that enable a system to be written as
interacting, autonomous subsystems. Although there are examples of
tools that attempt to support some of these aspects (e.g., PICON™
supports problem concurrency), concurrency was generally viewed as a
lacking but useful capability for expert system tools.

Consistency Checking. This capability, while desirable,
introduced some questions, such as whether a tool's semantics are domain
dependent or independent, whether actual system performance should be
verified, and whether consistency checking should be performed as a
static or dynamic process. There were also questions about what should
happen when an inconsistency is found, i.e., whether the tool should
automatically correct the error, warn the user, or abort computation.

Development Documentation. It was largely felt that this
capability could be closely coupled to a tool's explanation facility.
While automatic generation of development documentation was seen as a
needed capability, especially for maintenance, there are questions about
its granularity: should it document the entire system as a whole, its
component subsystems, or individual concepts? It was pointed out that
some current tools do not provide even the capability to manually add

comments to rules.

- 44 -

Inference and Control. Several additional features were
enumerated for this capability, such as event scheduling and message
passing, as well as those control structures supported by conventional
programming languages (e.g., iteration and subroutining). It was also
recommended that those features supported by a tool should have clearly
defined semantics (for example, specifying what type of conflict
resolution is used).

Life Cycle. Although there was not a strong consensus, it was
suggested that a tool's support for target system life cycle be included
as a capability (i.e., tool support for the evolution of a target system
from conception through delivery and maintenance). In addition, it was
pointed out that the ability of a tool to transition from one context
phase to another is extremely important and should be included
explicitly under life-cycle considerations.

Optimization. There was some disagreement as to what this
capability should imply, i.e., should it mean performance optimization?
Space optimization? And what should happen if one impedes the other?

A number of features were recommended for supporting this capability,
including intelligent look-ahead, result caching, rule compilation,
dynamically reordering rules, automatic rule modification, and the

ability to port to fast delivery environments.

Metrics

Our original framework provided a lengthy set of metrics to measure
the quality of particular aspects of an expert system tool. These are
described in detail in our second questionnaire (see App. B), and are

summarized below:

¢ Adequacy ¢ Flexibility

* Availability ¢ Integration

* Breadth * Maintainability
¢ C(Clarity * Modularity

* Cognitive efficiency * Philosophy

* C(Coherence * Portability

- 45 -

* Completeness ¢ Power

* Congruence ¢ Reliability

¢ Consistency ¢ Responsiveness

* Controllability ®* Robustness

* Cost ® Scalability

¢ Defeatability ¢ Sophistication

¢ Ease of use ¢ Subsetability/separability
¢ Efficiency * Usability

¢ Extensibility * Learnability

We attempted to make the list exhaustive, but the participants felt
that it was too long and that the meaning of many of the metrics
overlapped. On the first day of the workshop, the group discussing this
dimension chose to aggregate the metrics into six "higher-level"
concepts that subsumed the original ones. Though there is still some
overlap and ambiguity in these aggregated metrics, the group felt that
they would be easier to work with, while capturing the same information.

Aggregated Metrics. The six aggregated metrics developed on the

first day of the workshop are:

O Cost

O Flexibility

Q Extensibility
d Clarity

¢ Efficiency

¢ Vendor Support

Cost. This includes not only the sales price of a tool, but also
its hidden expenses, such as costs of training, integration, etc.
Furthermore, it includes not only monetary cost, but also expenditures
of resources such as time and effort.

Flexibility. This subsumes those metrics that deal with a tool's
power and capabilities: representational power (i.e., basic data

structures and reasoning mechanisms), adequacy to perform a given task

- 46 -

or tasks, ease of use (i.e., both of the tool and of systems built with
it), and sophistication. It was noted that flexibility may be
antithetical to maintainability.

Extensibility. This deals with applying a tool in ways that are
not directly supported or were unanticipated by the tool's developer.
It includes breadth of applicability, access to system parameters,
defeatability (the ease with which one can override a system parameter
or function), ease of integration, portability, scalability, and
subsetability.

Clarity. This subsumes those metrics that deal with relative ease
or difficulty of understanding the basic operations of a tool: ease of
use and usability (i.e., how much work is involved in doing something),
cognitive efficiency (i.e., how many concepts must be kept in mind to
use the tool), coherence of the tool's features, responsiveness (i.e.,
how the tool responds, rather than how fast), maintainability,
modularity, and learnability.

Efficiency. This encompasses all aspects of a tool's
responsiveness (i.e., how fast it responds) and its utilization of
computational and memory resources. This metric also deals with the
efficiency of the systems built with a tool.

Vendor Support. This consists of the quality of support supplied
by the vendor and subsumes such metrics as vendor philosophy, system
availability, reliability, portability, and robustness.

The Varying Importance of Metrics Over Phases. The group
further examined how the relative importance of these metrics varies

through the phases of an expert system project, i.e.,

O Exploration/conceptualization
= Prototyping/design

. Development/implementation

. Fielding/delivery

. Operation/maintenance

- 47 -

The relative importance of metrics across development phases (see
Fig. 1) is suggestive of the qualitative relationships of importance for
five of the six metrics. The cost metric does not appear on this graph
because, while cost permeates all aspects of evaluation, it behaves
uniquely: cost seems to be of most importance at the transitions from
one phase to the next, where decisions are made to continue with a tool
or switch to a different tool. Leaving cost aside, therefore, we
discuss the behavior of the remaining five metrics in the graph.

Clarity is important throughout the entire life cycle. It starts
high, stays high, and ends high, for different reasons during different
phases. It is important to the beginning user learning the tool, who
must be able to grasp its concepts and representations quickly. It is
also important to the developer, who must be able to apply the tool's
mechanisms effectively, refine an evolving knowledge base and build a
target system that is easily comprehended and verified by domain experts
(during development) and easily understood and used by end-users (after
delivery). Finally, it is important to the maintainer of a target
system, who must be able to understand and modify the existing knowledge
base.

Flexibility, on the other hand, is of most importance during the
initial stages of tool use, starting high and peaking somewhere during
the prototyping phase. As choices for representation and control become
fixed, flexibility decreases in importance, taking on an almost negative
aspect as the need for maintainability rises.

Vendor support has relatively low importance at first, taking the
form of training and coaching; but it rises rather quickly, staying high
throughout the remainder of the life cycle, as the tool user moves out
of the exploration phase and pushes the tool to its limits.

Extensibility is of minor importance until the tool user begins to
fulfill specialized requirements of an application during design and
implementation. Its importance drops during fielding (wh2n system
functionality has presumably stabilized), but it rises again during
maintenance as the delivered system evolves or requires reintegration in

an evolving target environment.

- 48

ssseyd juswdofsasp ssoide sOTIjzeow jo oosuejrodwt 2AT3IER[OY -- ["STJ

edueuajujew Buipjey uojjejuawa)dwy) ubjsep uojjezjjenydasucd
Juojiesado /A1eAjlop Auswdojaasp /6ujdAjorosd /uopesoldxa
Qmucq AssssAasas / \\\\l
) \
\s\\s\\
//fr!.t\\ 1
/

aouejsoduy

Aouajoy3

Amqisuaixg

uoddng lopuap

Aungixerd

Ayseip

- 49 -

Finally, efficiency remains low through exploration, design, and
development, but ultimately becomes more important than even clarity if
performance requirements become critical.

While this analysis of metrics is by no means definitive, it
illustrates the concerns of the workshop participants that metrics be
consolidated into a manageable set of concepts that are easily grasped.
It also shows that the importance of these concepts varies through the
life cycle of an expert system tool, making tool selection highly

dependent upon the use (or uses) to which a tool will be put.

Assessment Techniques

Assessment techniques suggested in our original framework are shown

below.
Comparisons
between tools
between a tool and a baseline
between a tool and an ideal tool
Benchmarks

small benchmarks
large benchmarks
Case studies
Library of expert system efforts
Interviews
Questionnaires

An expert system for expert system evaluation

The working group that dealt with assessment techniques questioned
a number of these, refined others, and added a new one (which it dubbed
the "Rolodex'™ approach).

While all the techniques were considered to be of some value, the
group doubted that the anticipated benefits of comparison with a
baseline or ideal tool standard and large benchmarks would outweigh the
costs of implementing these approaches (however, see the comparison

between tools, below, for further justification of these techniques).

- 50 -

The techniques are discussed next in order of the importance
accorded them by the workshop participants.

Comparison Between Tools. The users felt that a "Consumer
Report'™ style comparison between tools would be the most beneficial
assessment technique, since evaluation is generally motivated by the
need to make a selection, for which a comparison of choices is
particularly useful.

The point was raised, however, that there is no standard definition
for many of the features and capabilities found in expert system tools.
Two tools may claim to provide a forward-chaining capability, but their
definitions (and implementations) of this capability may vary widely.

In addition, a vendor may implement a crude form of some capability
simply to be able to say that it is supported, even if it is not
integrated into the system. To combat this, the comparison must supply
a set of standard definitions and discuss the ways in which the features
and capabilities of an expert system tool differ from this standard.

For example, 'goal-directed reasoning' might be defined as a capability
for deriving a series of actions sufficient to achieve a stated goal;
"backward-chaining' might then be defined as a feature that allows rules
to be used to perform goal-directed reasoning. In this way, the report
could indicate to what extent a tool has a certain capability and how it
compares to a similar capability of another tool.

Comparisons between a baseline tool and an ideal tool were both
felt to be impractical and unrevealing. For instance, most tools would
so far exceed a baseline such as Common LISP that comparison would not
be meaningful, while defining a standard, "ideal" tool that would keep
up with advances in technology and be acceptable to everyone would
present a major problem. However, we note that the realistic
implementation of a Consumer Report comparison, as discussed above,
requires standard definitions of capabilities, which may be equivalent
to defining a baseline or ideal tool.

Small Benchmarks. A suite of small benchmarks was perceived as
being helpful in testing a tool's capabilities, though there were some
questions about how benchmarks could be implemented effectively. 1In

particular, concerns about benchmarks included:

- 51 =~

1. Each benchmark should test a certain capability and demonstrate
how that capability integrates with the system as a whole.

2. A benchmark problem should, at least at an intuitive level,
scale up to larger problems.

3. There should be benchmarks to test standard software
engineering needs, including integration, reliability, and

efficiency.

Despite the potential value of benchmarks, there were additional
concerns over who would define benchmark problems and who would solve
them. Obviously, the effort would need to be monitored by a group that
was unbiased and conscientious. One suggestion was to have the tool
vendors themselves define benchmark problems. Another suggestion was
that the small "system teasers' often published in various trade
journals could serve as an existing source of benchmarks.

Since each benchmark problem would have to be solved for every tool
being evaluated, the number of solutions would tax an individual
evaluator. Further, unless the implementers were already AI experts,
their own performance might improve over time, producing better and
better solutions with each successive tool. Alternatively, while
allowing the tool developers to solve the benchmarks might deliver the
most elegant solutions for each, it would not guarantee the most
straightforward or revealing solutions. Finally, allowing different
people to solve different benchmarks for different tools is problematic
because variations in programming ability might introduce more variance
than the tool characteristics themselves. It was felt that the best
solution for this dilemma might be to use a combination of these
approaches and compare their results. (For further discussion of
benchmarks, see Validation of Evaluation Dimensions and Criteria, pp.
3-5.)

The majority of participants felt that large benchmarks would tend
to be domain-specific. That is, the domain-dependent details of a large
benchmark might make its relevance for different problems difficult to
see. Furthermore, it was felt that if small benchmarks were scalable,

large benchmarks might be superfluous.

- 52 =

A Knowledge-Based System for Tool Evaluation. It was felt that
an expert system for aiding at least in preliminary evaluations of
expert system tools would be helpful as a means of filtering through
large amounts of initial data. Such a system could be used for either

of two tasks:

1. Given a problem description, the system would identify those
metrics that would be important for tool evaluation.
2. Given the metrics that are most important to the user, the

system would recommend a tool.

Task 1 was generally considered to be infeasible at this time,
since it would involve describing a problem to an expert system.
However, Task 2 was considered tractable. Two approaches to building
such a system were suggested: either as an automated tool for compiling
data collected by other assessment techniques, or as a standard expert
system application, drawing on the expertise of tool users with
experience in selecting tools.

The first of these approaches to Task 2 was considered feasible,
though it was noted that it depends heavily on the maturity of the other
assessment techniques. The second approach was considered intractable
for reasons similar to those that led to the rejection of Task 1: many
users felt that the decision processes involved were so complex that
this would again amount to describing the problem to the system, and
that current "expert" users (including themselves) were not proficient
enough at tool selection to be considered experts.

As an aside, one of the working groups on the second day of the
workshop developed some evaluation scenarios as an exercise, feeling
that if the group members could agree in most cases, this would imply
that they were all using a common set of rules about evaluation. (Even
if these rules could not yet be articulated, their implied existence
would suggest the feasibility of knowledge-based tool evaluation.) The
group did tend to agree on the evaluation process and results, which

suggests that there is a pool of expertise that could be encoded. On

- 53 =

the other hand, one participant related that students at an in-house AI
training school had tried a similar task as an exercise and were
unsuccessful, suggesting that this approach be pursued with caution.

The Rolodex™ Technique. A new approach to tool selection and
evaluation that was suggested and received considerable interest at the
workshop was one that was dubbed the "Rolodex'" technique. The essence
of this technique is that users should consult their personal or
professional address books (files of business cards, etc.) and talk with
someone who has used the tool.

The advantage of this approach is that people normally tend to
interpret written recommendations with considerable skepticism (even
those written by someone they know) and often prefer direct human
interaction. It was asserted that this is the way consumers tend to buy
first-time purchases (for example, consumers will call a friend and ask,
"What kind of VCR do you have? Do you like it? Why?"). This gives
them direct, personal input from someone they know and trust as well as
the ability to interact and ask specific questions. The group felt that
many users selecting an expert system tool do the same thing: they call
business associates (or people they have met at conferences, etc.) and
ask about their experiences with such tools.

Although concerns for privacy might prevent this from becoming a
formal assessment technique, it should be acknowledged as a technique
that people are likely to use in conjunction with other techniques.

Case Studies. While there was not a great deal of enthusiasm
among the workshop attendees for using case studies as an assessment
technique for evaluation, there was some discussion of possible kinds of
case studies. In particular, it was noted that case studies of the tool
selection process itself might be useful, as well as case studies of
expert system development efforts that use tools.

However, there was general concern that such studies would quickly
become outdated, and that they might produce too much data for practical
decisionmaking. Because after-the-fact questionnaires tend to overlook
errors and problems encountered during a project, the recommended
approach to performing case studies was to make them external and

progressive. That is, a development team would be visited at intervals

-54-
and asked questions that would (among other things) attempt to identify
progress and pitfalls. It was noted that one problem with this
technique is that many of the most interesting projects are secret or
proprietary, and hence cannot be studied externmally.

Other Techniques. The attendees felt that the other techniques
(i.e., a library of system efforts, interviews, and questionnaires) were
so problem-specific that they would not be worth the time required to
develop and implement them. The general consensus was that such time
and money would be better spent on the other techniques. We note,
however, that the results of the two questionnaires we sent to the
attendees revealed some interesting insights which were purchased at the
relatively low price of designing, mailing, and reviewing these textual
instruments, without the need to purchase hardware or software or to

write code.

Contexts

For purposes of evaluation, the context dimension accounts for the
phase or phases of system development for which the tool will be used.
Ideally, a single tool would be usable in all contexts, but a different
tool might be used at each phase. We note that our breakdown of phases
is somewhat different from the standard decomposition of the phases of
expert system development (Waterman, 1986a).

Participants in our users' workshop elaborated this dimension,

unifying it with the stages of expert system development:

C Conceptualization
* Prototyping
C Development

. Operation/fielding

Conceptualization. The conceptualization context encompasses the
identification, conceptualization, and formalization phases of expert
system development. A tool may be used as a structured formalism to aid
in the design of the expert system and to support the development team

in becoming familiar with the domain. The tool can help in decomposing

- 55 -

the problem, identifying and organizing key concepts, and identifying
the scope of the problem.

Prototyping. The prototype context is concerned with the use of a
tool in prototyping an expert system. This context emphasizes the
tool's facilities for guiding rapid development, eliciting different
approaches and representations, and quickly trying alternative
implementations.

Development. This context considers the tool as it is used to
develop an expert system targeted ultimately for fielding. The tool's
suitability for software development, including its debugging facilities
and configuration control, are emphasized here.

Operation/Fielding. The operation/fielding context recognizes the
effect that a tool has on the delivery of an expert system to its
community of end-users and the performance and interface capabilities of
that system. The emphasis in this context is on the tool's facilities
for porting from the development environment to the delivery environment
and its performance, maintenance, and support characteristics in the
delivery environment.

The working groups agreed that in addition to being useful at each
of these phases of development, a tool must also ease the transition
from one context to the next. For instance, a tool that allows its
debugging features to be turned off and its interface to be easily
enhanced aids the developer's task when the expert system makes the
transition from development to operation/fielding. The extent to which
a tool supports these transitions was felt to be important by all

participants.

Integration

A great deal of interest and concern was expressed at the workshop
over issues involved with integrating expert systems with other software
and hardware. Expert systems have evolved from special-purpose,
standalone systems that accommodate Al expert users into multi-user
systems that need to interact with on-line databases, be embedded in
other programs, receive information from sensors, and use their results

to control other hardware.

- 56 -

Many workshop participants had run into problems getting their
tools to integrate with other computer systems or databases, and all
agreed that substantial improvements are necessary. A few were
designing extremely large expert systems that needed to handle billions
of transactions per day. These developers encountered several
integration problems, including accessing very large databases,
integrating into a system that supports hundreds or thousands of
concurrent users at remote terminals, and interfacing with huge
mainframe computers. They were frustrated by the difficulty of
accomplishing these tasks, due partly to the fact that the tools were
not designed with integration in mind and the internals of the tools
were not easily accessible.

Tool Support for Integration. Users discussed how much
responsibility tool vendors should have for making their tools

integrable. Several alternatives were discussed at the workshop:

C Standard applications
. Standard interface
. Internal access

O Interface management tools

Standard Applications. In the standard-application approach, a
vendor chooses some popular standard systems (such as dBase-II™ of
Ashton-Tate, Inc., or Britton-Lee Intelligent Database Machine™ and
provides interfaces to them. This may satisfy some users for a limited
time, but there will always be other software or hardware that will
resist integration with the tool. The choice of a tool may therefore be
dictated by which tools offer the required interfaces.

Standard Interface. The standard-interface approach requires
agreement among vendors to standardize their interfaces, similar to the
open-system architecture. The attendees felt that this was a promising
alternative, but a distant goal due to the difficulty of getting large
groups to form a consensus. Nevertheless, participants felt that the
success of the ISO standard-communication protocols was an encouraging

example, and that this approach should be pursued.

- 57 =

Internal Access. For the internal-access approach, the vendors
would explain how to access their tools' internals so that users could
write their own interfaces. This was also perceived as a positive step
in the right direction. At least it would provide tool users with a way
to interface with external hardware and software. Interfaces written by
users might be included in future versions of the tools or put in the
public domain. Of course, in cases where vendors do not take over such
interfaces, users must support and maintain them themselves; this may
require continual revision of these locally developed interfaces to
adapt to new vendor software releases.

Interface Management Tools. Finally, the vendors could offer tools
to users to help write their own interfaces, i.e., an interface-
management-tools approach. This was appealing to most users and was
perceived as having great potential value. Such tools would allow users
to write whatever interfaces they needed, without grappling with the
details of the tool's implementation.

Kinds of Integration. Integration is perceived as an urgent need,
independent of which alternative is chosen by a vendor. Participants
felt that the next generation of tools should address a number of
integration issues, a selection of which are shown in the following
list. A brief synopsis and examples of each were developed at the

workshop.

Information acquisition and distribution
Database management systems
Communications
Data input
Multi-user

Environments
Software systems
Hardware systems
Output devices

Temporal
Distributed
Concurrent

Real-time

- 58 -

Information Acquisition and Distribution

Database Hanagement Systems. Many applications require that the
expert system access knowledge from outside sources, because the
knowledge must be updated, changed, or shared. If an external database
already exists, it may be inappropriate to reproduce the data as a local
knowledge base; translating an external database into a local knowledge
base may even be impossible due to storage limitations of the expert
system tool. Similarly, it may be impractical to include certain kinds
of externally represented information, such as maps or weather data, in
an expert system's knowledge base.

Communications. The expert system may need to communicate with
other computers over communication networks, perhaps to update the
knowledge base. System results may be sent over a modem to a remote
location. For example, an expert system that plans flight paths for
airplanes may send the airplanes their orders directly.

Data Input. Expert systems should be able to take advantage of
sensors and other data-collection devices, such as vision systems, and
exploit the edge they provide over entering information by hand or
indirectly. For example, an expert system at a bank might be able to
read information from bank checks.

Multi-User. This may be especially important if an expert system
is linked to a central database. For example, a credit card approval
expert system has to deal with stores dialing in for approval, new

credit account entries, and updates to the database.

Environments

Software Systems. It is often necessary to link an expert system
with other software. The expert system's results may be used by another
program, or some other program may trigger the execution of an expert
system. For instance, an expert system to monitor a spacecraft must

interface with the spacecraft's other control systems.

- 59 -

Hardware Systems. Fielding a mass-distributed expert system on
development hardware may be prohibitively expensive. Expensive
equipment may be necessary for expert system design and prototyping,
e.g., to provide graphic knowledge-base tracing and debugging, but the
target expert system may need to be ported to a small computer or one
that is more mobile (e.g., for use in an airplane) and may not require
graphics or other support features.

Output Devices. The effectiveness of an expert system depends
greatly on the nature of its communication with the end-~user. It may
exploit a graphical display to convey ideas more quickly than text by

using windows, graphics devices, or printers.

Temporal

Distributed. A single expert system may not have the power to
attack a whole problem. In this case, the problem can be split among
several systems which communicate and cooperate with one another. For
example, an aircraft design problem might be partitioned into the design
of the fuselage, the engines, and the interior. Each system would need
to communicate with the others to assure that all pieces would fit
together and maintain conceptual homogeneity.

Concurrent. For some problems, no single machine has the computing
power needed to provide a reasonable response time. Many alternatives
may be explored simultaneously to improve performance. For instance, an
expert system trying to devise a battle plan may test several
prospective plans at the same time, selecting the most successful one
when a choice becomes necessary.

Real-Time. Certain kinds of expertise must be applied in real-
time, either due to a crisis situation (such as in an intensive care
unit monitoring system) or because a slower response to a large quantity
of queries would result in an unacceptable backlog (as with a passenger

reservation system).

- 60 -

CONCERNS OF NEW TOOL CHOOSERS AND USERS

Another area of particular interest at the users' workshop was the
situation faced by users selecting or using a tool for the first time.
Many companies are just beginning to become involved with expert system
technology. A user faced with selecting a tool for the first time has
limited experience to draw on; a user who is receiving an initial
introduction to using an expert system tool has needs that differ,
sometimes substantially, from those of users with more experience. The
tools must address these needs as well.

Workshop attendees who were at the stage of initial tool selection
felt that it would be very helpful to read a consolidation of different
opinions of people who had used the tools. These users felt that any
information they could find would be worth spending the time to read.
In contrast, those who had substantial experience with expert systems
felt that such information would be of limited utility and perhaps not
worth the investment in time. A useful analogy might be someone trying
to sail a boat for the first time: the novice would want calm
conditions, a working boat, and the best possible teacher. These types
of requirements apply to a first-time expert system tool user too.
Participants felt it was important to bring these issues to light even
though they are primarily common sense. The following two contrasting
anecdotes from the workshop point out key considerations about tool
users' needs and the differences between those of new and experienced

users:

One user had just bought a tool and had the misfortune of
buying it when a new release had just come out. He had spent
quite a while trying to learn to use the tool and was
frustrated because he was never sure whether the problems he
encountered were due to his own confusion, or whether the new
version of the tool was still "buggy.” He saw the vendor's
dilemma too: if the vendor had offered him only the old
version, he might not have bought it, since some of the
capabilities required by his project were available only in
the new version. But since the vendor had sold him the new
version, he saw the vendor as unreliable, and he experienced
frustration using the tool.

- 61 -

Another user had been using a tool for a while and had
received the new version of that tool. He had some problems
with the new tool, so he called the vendor. The vendor was
Immediately available to talk to him on the phone, and
together they determined that there was a bug in the new
version of the tool. The user had a new, patched version
within two days. He was very satisfied with the vendor and
did not mind having to help debug the tool as long as he got
such quick response and support.

There was general agreement on a set of things that every new user

needs:

d Working version (minimal bugs)
. Training course from vendor

. Immediate reinforcement

The workshop participants felt it was imperative that the version
of the tool used for learning be one without bugs. Someone just
learning to use a software package cannot distinguish between his own
errors and possible bugs in the software. Sometimes only the very
latest and therefore somewhat error-prone version has the features
needed to write a particular application, but even in this situation it
was deemed better to let the user learn about the tool with an earlier,
insufficient version and move to the later, less stable version once the
earlier one has been mastered.

If taking a course to learn a tool provides a significant advantage
over reading the documentation, such courses should be taken whenever
possible. The company involved in the design of a toecl has significant
insight about how that tool can best be used, and the chances of
conveying that insight are much better in person. In addition, there is
little chance of users retaining what they have learned in a course if
they are immediately sidetracked onto some unrelated project. Workshop
attendees agreed that if the investment in attending a course has been
made, users should be allowed to set aside several weeks after their

return to consolidate and reinforce what they have learned.

- 62 -

WISH LIST

In the two-day discussion of tools during the users' workshop, many
participants were overheard saying, "Don't you wish there were a tool
that did X?" Several of the working groups produced their own "wish
lists'" of desirable features. Similarly, the questionnaires revealed
many desiderata for expert system tools. This section is a compilation
of these wish lists, reflecting the needs and wants of a representative
sample of tool users. (This is a somewhat random sample of ideas and
does not necessarily represent our own desires or predictions for the
next generation of tools, but we include it for completeness.)

The wishes fell into the following categories:

. Knowledge-base and representational enhancements
C Software engineering aids

C Delivery support

Knowledge-Base and Representational Enhancements
Workshop participants identified the need for a number of
extensions in the areas of knowledge representation and knowledge-base

maintenance:

. Higher-level knowledge representation

s Multiple relations

. Standardized knowledge representation

i Models of external entities

O Knowledge-acquisition aids

C Reusable general knowledge bases

C Self-organizing knowledge bases with automatic summary
C Automated validation and verification

C Retention of test-case data

C Change logs

- 63 -

Higher-Level Knowledge Representation. Representations such as
rules and frames are sometimes too low-level for very complicated
knowledge bases. A higher-level language written on top of these
constructs would allow high-level knowledge representation. This makes
it easier for experts to understand the knowledge encoded in the
knowledge base and to find inconsistencies or gaps. Similarly, domain-
specific input and output would help experts and developers understand
and change the knowledge by presenting it in a familiar form.

Multiple Relations. Complex expert systems often require multiple
relationships among objects, such as IS-4 (type-of), part-of, subset-
of, is-connected-to, etc. Each of these requires a different kind of

' (Such inference

associated inference, analogous to “inheritance.'
mechanisms are often referred to as different kinds of inheritance,
which can be misleading, since inheritance per se pertains to the IS-4
relation.) For example, the part-of relation requires inference for
combining parts into wholes and disaggregating wholes into their parts.
Tools should support these different kinds of inference or facilitate
users' implementing their own.

Standardized Knowledge Representation. Many expert system
applications deal with the same domains. A standard language for
knowledge representation would allow information to be shared among
applications. Similarly, communicating expert systems require a common
language and protocol; this can currently be accomplished only by using
a common tool (or programming language) for both applications. A
standard would allow technology and information to be shared more
easily. The requirements for a standard language include clarity,
conceptual simplicity, and a high level of abstraction.

Models of External Entities. An expert system used in designing
something may be concerned with only a part of the design, but it may
still need to know about the other pieces (e.g., their weights,
capacities, functions, etc). That is, it will require a model of each
external entity in order to design the part. There is frequently a need
to represent such external entities within an expert system, and tools

should provide facilities for this kind of modeling.

- 64 -

Knowledge-Acquisition Aids. Knowledge acquisition is a major part
of the development of any expert system. If this task could be
simplified, clarified, or aided in any way, it would speed development
and produce better systems. - One suggested approach would be for tools
to provide domain-specific knowledge acquisition (e.g., geared to
physics or medicine) or problem-type-specific knowledge acquisition
(e.g., for acquiring planning or diagnostic strategies). It would also
be useful for a knowledge-acquisition mechanism to be able to draw
conclusions from examples or to learn from its own mistakes. This would
be analogous to field training of human experts. Knowledge-base
browsers would also help developers organize or add to knowledge bases.

Reusable General Knowledge Bases. Ultimately, it is desirable to
produce reusable knowledge bases for particular domains. For example, a
general biology knowledge base might be useful across a wide range of
applications. This could be thought of as an AI representation of the
knowledge in a biology textbook; it would save developers the effort of
encoding well-known background knowledge of biology, both for biological
applications and for nonbiological applications that require this
background knowledge.

Self-Organizing Knowledge Bases with Automatic Summary. Users
expressed a desire for tools that would automatically organize their own
knowledge bases, i.e., create catalogs of entries that users could
query, and generate automatic summaries of their knowledge bases (or
selected parts of them) to give an end-user or expert system developer
an overview of the knowledge they contain.

Automated Validation and Verification. As information is added to
a knowledge base, a tool could verify that the new facts are not in
conflict with others already in the knowledge base. If a fact does
conflict, the tool should notify the developer, show which facts
conflict, and allow fixing the discrepancy. If an expert system permits
conflicting knowledge, the tool should still optionally notify the
developer or keep a log of conflicts. A tool might also be able to
check a knowledge base for semantic consistency (as defined by the

user), for example, detecting rules that can never fire.

- 65 =

Retention of Test-Case Data. A tool should allow for storing test
cases and their solutions as a system is being developed. As the
knowledge base evolves, it can be tested automatically against the
stored test cases to verify its correctness.

Change Logs. A tool should keep records of changes to the
knowledge base, remembering who made the change, when it was made, and
why. If discrepancies arise, developers can ascertain who made the
changes and why and can reconstruct previous states of the knowledge

base when necessary.

Software Engineering Aids
The participants expressed a number of desired extensions that can

be thought of as software engineering aids:

. More explicit control over control
O Better documentation
O Debugging aids

. Quality assurance

More Explicit -Control Over Control. Using some tools, the only
way to affect the flow of control of an expert system is by reordering
rules in the knowledge base. It is hard to express intentional
orderings in this way, and adding a rule requires an understanding of
the current ordering and the possible effects of changing it. It would
be preferable in many cases to provide explicit control over this
control flow.

Better Documentation. Tools need formal specifications, semantic
descriptions, and good documentation. Often a tool user needs to
enhance a tool, which is very difficult without complete documentation.
To take full advantage of a tool, a user must have access to all the
necessary information about that tool.

Debugging Aids. Debugging aids should be associated with each of
the tool's features. For example, if the tool offers user-directed

explanation, it should also offer a debugging aid for user-directed

- 66 -

explanation. Since an expert system is a software product, all parts of
it must be fully debugged for it to work properly and reliably.

Quality Assurance. Tool users need to know how rigorously a
product has been tested before it is distributed. If a new version of a
tool is released with possible bugs, this fact should be explained to
users. Ideally, tools should go through test suites to insure that they
have no glaring bugs. Quality assurance testing of this kind would be
highly reassuring to users.

Tool vendors vary in the levels of testing they perform before
releasing a new version of a tool. Users felt that a vendors’' policies
toward releasing software with bugs should be made explicit, so that
users will know what to expect. Many users do not mind getting a new
release that is not fully debugged if it has new features that they are
eager to use, provided the vendor is responsive to bug reports and is

willing to work with users to solve problems quickly.

Delivery Support
Workshop participants listed a number of desiderata related to tool

support for delivering finished expert systems:

C Modifications for the delivery environment
C Assistance in generating efficient systems
* Real-time support and first-fit search

C Support for integration

C Support for human interaction

C Ability to selectively watch reasoning processes

Modifications for the Delivery Environment. Certain features of a
tool that are useful during development may not be required in the
delivered expert system. In fact, there may be features of a tool that
should be kept hidden from end-users (e.g., debugging aids, explanations
that use internal representations, or the ability to change the
knowledge base). It should be possible to disable these tool features

when fielding an expert system. If disabling certain features saves

- 67 =~

significant amounts of time or memory, it may also be useful to allow
disabling them during development.

Assistance in Generating Efficient Systems. Performance is often a
major issue in expert system design. It would be useful for a tool to
provide performance analysis in the development environment to let the
developer know whether it will perform satisfactorily. Such analysis
would indicate the best areas for optimization in the fielded expert
system. It might even be possible to compile into a faster language or
to use more sophisticated optimization techniques prior to fielding.

Real-Time Support and First-Fit Search. Some applications require
that an expert system perform in real-time. Since the necessary
reasoning cannot always take place in the available time, this requires
ways of constraining the inferencing mechanism for timeliness.

Similar mechanisms (i.e., constraining inferencing on the basis of
resource consumption) would allow a form of "first-fit" search in which
a system would reach an uncertain initial conclusion and would proceed
on the basis of this conclusion. Subsequent reasoning could later
replace this initial conclusion with one of greater certainty, in which
case the system would interrupt itself and backtrack using the more
certain conclusion.

Support for Integration. Integration was a major issue throughout
the users' workshop. Participants noted that considerable effort was
required to perform the integration necessary to implement their expert
systems. They felt that tools should support integration with multiple
knowledge sources, DBMSs, sensors, and effectors.

Support for Human Interaction. Most expert systems interact with
human users. Support for user interface design is therefore a crucial
requirement for a tool. For example, explanation should use the natural
vocabulary and terminology of the expected users; this may require
support for text or graphics, depending on the user community. The
level of expertise of the expected users should also be considered:
results must be presented in a way that will be readily apparent and
easily interpreted. Tools should allow building interfaces that exploit
a human's multi-processing capabilities, using a combination of text,

graphics, and sound.

- 68 -

Furthermore, tools should support building interfaces that allow
users to choose the level and form of output or explanation they
receive. For example, different users may want different explanations
that show the text of the rules that fired, or the first principles of
those rules, or graphical representations of the tree of rules
considered. Whereas an expert system developer may want to know how the
system arrived at a conclusion, an end-user may want to know why the
conclusion was true in a particular case. Tools should provide (or
allow building) multiple models of users, covering a wide range of end-
users and developers.

Ability to Selectively Watch Reasoning Processes. It is often
useful for an expert system developer or end-user to observe some of the
reasoning that leads an expert system to a particular conclusion. If
the system is being used as an interactive aid, the user may want to see

what leads it to a conclusion before acting on its advice.

- 69 -

Appendix A

LIST OF PARTICIPANTS

EXPERT SYSTEM TOOL DEVELOPERS' WORKSHOP

Richard Fikes
Intellicorp
1975 E1 Camino Real West
Mountain View, CA 94040-2216

Steve Hardy
Teknowledge
P.0. Box 10119
Palo Alto, CA 94303

Lowell Hawkinson
LISP Machines, Inc.
1000 Massachusetts Ave.
Cambridge, MA 02138

David Hornig
Carnegie Group
650 Commerce Court
Station Square
Pittsburgh, PA 15219

Anthony Magliero
Software Architecture
& Engineering
1600 Wilson Boulevard
Suite 500
Arlington, VA 22209

Steve Pard<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>